

Solution to Problem Set 2

February 25, 2025

Exercise 1.

First, $S_n = \frac{1}{N-n}R_n$ is a function of R_0, R_1, \dots, R_n . The triangle inequality and the fact that the random variables X_1, \dots, X_n are identically distributed give us

$$\begin{aligned}\mathbb{E}[|S_n|] &= \frac{1}{N-n} \mathbb{E}\left[\left|\sum_{i=1}^{N-n} X_i\right|\right] \\ &\leq \frac{1}{N-n} \sum_{i=1}^{N-n} \mathbb{E}[|X_1|] = \mathbb{E}[|X_1|] < +\infty,\end{aligned}$$

by hypothesis. Next, we need to show that $\mathbb{E}[S_{n+1}|R_0, \dots, R_n] = S_n$ for all $n \in \mathbb{N}$. Using the definitions of the different terms, we have

$$\begin{aligned}\mathbb{E}[S_{n+1}|R_0, \dots, R_n] &= \mathbb{E}[Y_{N-n-1}|Z_N, \dots, Z_{N-n}] \\ &= \frac{1}{N-n-1} \mathbb{E}[Z_{N-n-1}|Z_N, \dots, Z_{N-n}].\end{aligned}$$

Setting $m = N - n$, we obtain

$$\begin{aligned}&= \frac{1}{m-1} \mathbb{E}[Z_{m-1}|Z_m, \dots, Z_N] \\ &= \frac{1}{m-1} \sum_{i=1}^{m-1} \mathbb{E}[X_i|Z_m, X_{m+1}, \dots, X_N].\end{aligned}$$

We then observe that for all $i \leq m$,

$$\mathbb{E}[X_i|Z_m, X_{m+1}, \dots, X_N] = \mathbb{E}[X_1|Z_m, X_{m+1}, \dots, X_N]. \quad (1)$$

Indeed, knowing Z_m , the sum of m i.i.d. variables, the expectation of any individual variable in the sum is the same. Using this result, we obtain

$$\begin{aligned}\mathbb{E}[S_{n+1}|R_0, \dots, R_n] &= \frac{1}{m-1} \sum_{i=1}^{m-1} \mathbb{E}[X_1|Z_m, X_{m+1}, \dots, X_N] = \mathbb{E}[X_1|Z_m, X_{m+1}, \dots, X_N] \\ &= \frac{1}{m} \sum_{i=1}^m \mathbb{E}[X_1|Z_m, X_{m+1}, \dots, X_N] = \frac{1}{m} \mathbb{E}\left[\sum_{i=1}^m X_i|Z_m, X_{m+1}, \dots, X_N\right] \\ &= \frac{1}{m} \mathbb{E}[Z_m|Z_m, X_{m+1}, \dots, X_N] = \frac{1}{m} Z_m = R_{N-n} = S_n,\end{aligned}$$

which proves that (S_n) is a martingale with respect to (R_n) .

It remains to show the equality (1). This follows directly from the Lemma in Exercise 5 of Problem set 1.

Exercise 2.

Firstly, note that $S_n = \frac{1}{n+2}R_n$ is a function of R_0, R_1, \dots, R_n . At any time n , there are $n+2$ balls in the urn. Thus, S_n is simply the proportion of red balls in the urn at time n . For all $n \in \mathbb{N}$, we have $S_n \leq 1$, so $\mathbb{E}[|S_n|] \leq 1$. Moreover,

$$\begin{aligned}\mathbb{E}[S_{n+1}|R_0, \dots, R_n] &= \mathbb{E}\left[\frac{R_{n+1}}{n+3}|R_0, \dots, R_n\right] \\ &= \frac{1}{n+3}\mathbb{E}[R_{n+1}|R_0, \dots, R_n]\end{aligned}\tag{2}$$

It remains to compute $\mathbb{E}[R_{n+1}|R_0 = r_0, \dots, R_n = r_n]$ for all possible values of r_0, \dots, r_n . To do this, we use the definition of conditional expectation and the fact that, given R_n , the random variable R_{n+1} can take only two values: R_n and $R_n + 1$. Then,

$$\begin{aligned}\mathbb{E}[R_{n+1}|R_0 = r_0, \dots, R_n = r_n] &= \sum_r r \mathbb{P}(R_{n+1} = r|R_0 = r_0, \dots, R_n = r_n) \\ &= r \mathbb{P}(R_{n+1} = r|R_0 = r_0, \dots, R_n = r_n) + (r+1) \mathbb{P}(R_{n+1} = r+1|R_0 = r_0, \dots, R_n = r_n) \\ &= r \frac{n+2-r}{n+2} + (r+1) \frac{r}{n+2} \\ &= \frac{n+3}{n+2} r.\end{aligned}$$

Thus,

$$\mathbb{E}[R_{n+1}|R_0, \dots, R_n] = \frac{n+3}{n+2}R_n,$$

and, using this last relation and (2),

$$\mathbb{E}[S_{n+1}|R_0, \dots, R_n] = \frac{1}{n+3} \frac{n+3}{n+2} R_n = S_n.$$

Exercise 3.

Y_n is a function of X_n by the definition. Furthermore, since f is bounded, let $f_\infty \in \mathbb{R}^+$ be such that for all $x \in [0, 1]$, $|f(x)| \leq f_\infty$. Thus,

$$\mathbb{E}[|Y_n|] \leq 2^n \mathbb{E}[|f(X_n + \frac{1}{2^n}) - f(X_n)|] \leq 2^n (f_\infty + f_\infty) < +\infty.$$

We start by noting that the conditional distribution of Z given X_1, \dots, X_n is a uniform distribution on $[X_n, X_n + \frac{1}{2^n}]$. Indeed, given $x_1 \leq \dots \leq x_n$ with $x_i = k_i 2^{-i}$ and $x_{i+1} \leq$

$x_i + 2^{-(i+1)}$, we observe that $\{X_1 = x_1, \dots, X_n = x_n\} = \{x_n \leq Z < x_n + 2^{-n}\}$. Let $I \subset [0, 1]$ be an interval. Then

$$\mathbb{P}(Z \in I | X_1 = x_1, \dots, X_n = x_n) = \frac{\mathbb{P}(Z \in I, x_n \leq Z < x_n + 2^{-n})}{\mathbb{P}(x_n \leq Z < x_n + 2^{-n})}.$$

Consequently, if $I \cap [x_n, x_n + 2^{-n}] = \emptyset$, then this conditional probability is zero, and if $I \subset [x_n, x_n + 2^{-n}]$, it equals

$$\frac{\mathbb{P}(Z \in I)}{\mathbb{P}(x_n \leq Z < x_n + 2^{-n})} = \frac{|I|}{2^{-n}},$$

where $|I|$ is the length of I .

Thus, given X_1, \dots, X_n , the random variable X_{n+1} takes the value X_n or $X_n + \frac{1}{2^{n+1}}$ with conditional probability $\frac{1}{2}$ for each. Consequently,

$$\begin{aligned} \mathbb{E}[Y_{n+1} | X_1, \dots, X_n] &= 2^{n+1} \mathbb{E}[f(X_{n+1} + \frac{1}{2^{n+1}}) - f(X_{n+1}) | X_1, \dots, X_n] \\ &= 2^{n+1} \left(\frac{1}{2} \left[f(X_n + \frac{1}{2^{n+1}}) - f(X_n) \right] + \frac{1}{2} \left[f(X_n + \frac{1}{2^{n+1}} + \frac{1}{2^{n+1}}) - f(X_n + \frac{1}{2^{n+1}}) \right] \right) \\ &= 2^n \left(f(X_n + \frac{1}{2^n}) - f(X_n) \right) \\ &= Y_n, \end{aligned}$$

which proves that (Y_n) is a martingale relative to (X_n) .

Exercise 4.

In what follows we prove the statements explicitly only for a supermartingale $(Y_n)_n$ and observe that the corresponding results for a submartingale follow from the fact that $(-Y_n)_n$ is a submartingale.

1. For any $n \in \mathbb{N}$ we have that $\mathbb{E}Y_{n+1} = \mathbb{E}Y_n$. Note that

$$\mathbb{E}(Y_{n+1} - Y_n) = \mathbb{E}[\mathbb{E}[Y_{n+1} - Y_n | Z_1, Z_2, \dots, Z_n]] = 0 \quad (3)$$

and that

$$\mathbb{E}[Y_{n+1} - Y_n | Z_1, Z_2, \dots, Z_n] = \mathbb{E}[Y_{n+1} | Z_1, Z_2, \dots, Z_n] - Y_n \leq 0 \quad (4)$$

from the fact that Y_n is a supermartingale, we have

$$\mathbb{E}[Y_{n+1} | Z_1, Z_2, \dots, Z_n] - Y_n = 0, a.s..$$

This implies that Y_n is a martingale.

2. Note that $x \mapsto \min(x, a)$ is a concave function. Hence, by conditional Jensen's inequality

$$\mathbb{E}[\min(Y_{n+1}, a) | Z_1, \dots, Z_n] \leq \min(\mathbb{E}[Y_{n+1} | Z_1, \dots, Z_n], a) \leq \min(Y_n, a)$$

3. Let now $(Y_n)_n$ be equidistributed, then clearly $(\mathbb{E}[Y_n])_n$ is a constant sequence, and thus, by 1), $(Y_n)_n$ is a martingale. To show that $Y_1 = Y_2 = \dots$, we may use the fact that, same is true for, say, $(\min(Y_n, a))_n$. Observe that $A \subset B$ for $A, B \subset \Omega$ if and only if $A \cap B^c = \emptyset$. Therefore, our goal is to show that for any $p > n$,

$$\{Y_n \geq a\} \cap \{Y_p < a\} \text{ is a zero-set.}$$

By Exercise 1 and above observation that $(\min(Y_n, a))_n = Y_n \wedge a$ is a martingale, we have

$$\mathbb{E}[(Y_p \wedge a)|_n] = Y_n \wedge a \quad \text{a.s.} \quad (5)$$

Here $|_n$ is a short version for $|Z_1, \dots, Z_n$. Furthermore,

$$\begin{aligned} a \cdot 1_{\{Y_n \geq a\}} &= (Y_n \wedge a)1_{\{Y_n \geq a\}} = \mathbb{E}[(Y_p \wedge a)|_n]1_{\{Y_n \geq a\}} = \mathbb{E}[(Y_p \wedge a)1_{\{Y_n \geq a\}}|_n] \\ &= a\mathbb{E}[1_{\{Y_n \geq a, Y_p \geq a\}}|_n] + \mathbb{E}[Y_p 1_{\{Y_n \geq a > Y_p\}}|_n] \quad \text{a.s..} \end{aligned}$$

By taking expectation on both sides we get that

$$a\mathbb{P}[Y_n \geq a > Y_p] = a\mathbb{P}[Y_n \geq a] - a\mathbb{P}[Y_n \geq a, Y_p \geq a] = \mathbb{E}[Y_p 1_{\{Y_n \geq a > Y_p\}}],$$

which implies that $\mathbb{P}[Y_n \geq a > Y_p] = 0$. Otherwise the above is equivalent to

$$a = \mathbb{E}[Y_p|Y_n \geq a > Y_p] < a,$$

which leads to a contradiction.

In fact, this implies that $Y_p \geq Y_n$ almost surely. This is due to the fact that

$$\mathbb{P}[Y_n > Y_p] = \mathbb{P}[\exists a \in \mathbb{Q} : Y_n \geq a > Y_p] \leq \sum_{a \in \mathbb{Q}} \mathbb{P}[Y_n \geq a > Y_p] = 0.$$

By applying the argument to $(-Y_n)_n$, which is again an equidistributed martingale, we analogously obtain that $-Y_p \geq -Y_n$ almost surely. Combined together, $\mathbb{P}[Y_n = Y_p] = 1$ for all $n < p \in \mathbb{N}$. Since a countable union of zero sets is again a zero set we can conclude that

$$\mathbb{P}[Y_n = Y_1 \ \forall n \in \mathbb{N}] = 1.$$