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Exercise 1.

First, Sn = 1
N−n

Rn is a function of R0, R1, . . . , Rn. The triangle inequality and the
fact that the random variables X1, . . . , Xn are identically distributed give us

E[|Sn|] =
1

N − n
E

[∣∣∣∣∣
N−n∑
i=1

Xi

∣∣∣∣∣
]

⩽
1

N − n

N−n∑
i=1

E[|X1|] = E[|X1|] < +∞,

by hypothesis. Next, we need to show that E[Sn+1|R0, . . . , Rn] = Sn for all n ∈ N. Using
the definitions of the different terms, we have

E[Sn+1|R0, . . . , Rn] = E[YN−n−1|ZN , . . . , ZN−n]

=
1

N − n− 1
E[ZN−n−1|ZN , . . . , ZN−n].

Setting m = N − n, we obtain

=
1

m− 1
E[Zm−1|Zm, . . . , ZN ]

=
1

m− 1

m−1∑
i=1

E[Xi|Zm, Xm+1, . . . , XN ].

We then observe that for all i ⩽ m,

E[Xi|Zm, Xm+1, . . . , XN ] = E[X1|Zm, Xm+1, . . . , XN ]. (1)

Indeed, knowing Zm, the sum of m i.i.d. variables, the expectation of any individual
variable in the sum is the same. Using this result, we obtain

E[Sn+1|R0, . . . , Rn] =
1

m− 1

m−1∑
i=1

E[X1|Zm, Xm+1, . . . , XN ] = E[X1|Zm, Xm+1, . . . , XN ]

=
1

m

m∑
i=1

E [X1|Zm, Xm+1, . . . , XN ] =
1

m
E

[
m∑
i=1

Xi|Zm, Xm+1, . . . , XN

]
=

1

m
E [Zm|Zm, Xm+1, . . . , XN ] =

1

m
Zm = RN−n = Sn,

which proves that (Sn) is a martingale with respect to (Rn).
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It remains to show the equality (1). This follows directly from the Lemma in Exercise
5 of Problem set 1.

Exercise 2.

Firstly, note that Sn = 1
n+2

Rn is a function of R0, R1, . . . , Rn. At any time n, there
are n + 2 balls in the urn. Thus, Sn is simply the proportion of red balls in the urn at
time n. For all n ∈ N, we have Sn ⩽ 1, so E[|Sn|] ⩽ 1. Moreover,

E[Sn+1|R0, . . . , Rn] = E
ï
Rn+1

n+ 3
|R0, . . . , Rn

ò
=

1

n+ 3
E[Rn+1|R0, . . . , Rn] (2)

It remains to compute E[Rn+1|R0 = r0, . . . , Rn = rn] for all possible values of r0, . . . , rn.
To do this, we use the definition of conditional expectation and the fact that, given Rn,
the random variable Rn+1 can take only two values: Rn and Rn + 1. Then,

E[Rn+1|R0 = r0, . . . , Rn = rn]

=
∑
r

r P(Rn+1 = r|R0 = r0, . . . , Rn = rn)

= r P(Rn+1 = r|R0 = r0, . . . , Rn = rn) + (r + 1)P(Rn+1 = r + 1|R0 = r0, . . . , Rn = rn)

= r
n+ 2− r

n+ 2
+ (r + 1)

r

n+ 2

=
n+ 3

n+ 2
r.

Thus,

E[Rn+1|R0, . . . , Rn] =
n+ 3

n+ 2
Rn,

and, using this last relation and (2),

E[Sn+1|R0, . . . , Rn] =
1

n+ 3

n+ 3

n+ 2
Rn = Sn.

Exercise 3.

Yn is a function of Xn by the definition. Furthermore, since f is bounded, let f∞ ∈ R+

be such that for all x ∈ [0, 1], |f(x)| ⩽ f∞. Thus,

E[|Yn|] ⩽ 2nE[|f(Xn +
1

2n
)− f(Xn)|] ⩽ 2n(f∞ + f∞) < +∞.

We start by noting that the conditional distribution of Z given X1, . . . , Xn is a uniform
distribution on [Xn, Xn + 1

2n
[. Indeed, given x1 ⩽ · · · ⩽ xn with xi = ki2

−i and xi+1 ⩽
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xi + 2−(i+1), we observe that {X1 = x1, . . . , Xn = xn} = {xn ⩽ Z < xn + 2−n}. Let
I ⊂ [0, 1] be an interval. Then

P(Z ∈ I|X1 = x1, . . . , Xn = xn) =
P(Z ∈ I, xn ⩽ Z < xn + 2−n)

P(xn ⩽ Z < xn + 2−n)
.

Consequently, if I ∩ [xn, xn + 2−n[= ∅, then this conditional probability is zero, and if
I ⊂ [xn, xn + 2−n[, it equals

P(Z ∈ I)

P(xn ⩽ Z < xn + 2−n)
=

|I|
2−n

,

where |I| is the length of I.

Thus, given X1, . . . , Xn, the random variable Xn+1 takes the value Xn or Xn + 1
2n+1

with conditional probability 1
2
for each. Consequently,

E[Yn+1|X1, . . . , Xn] = 2n+1E[f(Xn+1 +
1

2n+1
)− f(Xn+1)|X1, . . . , Xn]

= 2n+1

Å
1

2

ï
f(Xn +

1

2n+1
)− f(Xn)

ò
+

1

2

ï
f(Xn +

1

2n+1
+

1

2n+1
)− f(Xn +

1

2n+1
)

òã
= 2n

Å
f(Xn +

1

2n
)− f(Xn)

ã
= Yn,

which proves that (Yn) is a martingale relative to (Xn).

Exercise 4.

In what follows we prove the statements explicitly only for a supermartingale (Yn)n and
observe that the corresponding results for a submartingale follow from the fact that (−Yn)n
is a submartingale.

1. For any n ∈ N we have that EYn+1 = EYn. Note that

E(Yn+1 − Yn) = E[E[Yn+1 − Yn|Z1, Z2, . . . , Zn]] = 0 (3)

and that

E[Yn+1 − Yn|Z1, Z2, . . . , Zn] = E[Yn+1|Z1, Z2, . . . , Zn]− Yn ⩽ 0 (4)

from the fact that Yn is a supermartingale, we have

E[Yn+1|Z1, Z2, . . . , Zn]− Yn = 0, a.s..

This implies that Yn is a martingale.

2. Note that x 7→ min(x, a) is a concave function. Hence, by conditional Jensen’s
inequality

E[min(Yn+1, a)|Z1, . . . , Zn] ⩽ min(E[Yn+1|Z1, . . . , Zn], a) ⩽ min(Yn, a)

3



3. Let now (Yn)n be equidistributed, then clearly (E[Yn])n is a constant sequence, and
thus, by 1), (Yn)n is a martingale. To show that Y1 = Y2 = . . . , we may use the fact
that, same is true for, say, (min(Yn, a))n. Observe that A ⊂ B for A,B ⊂ Ω if and
only if A ∩Bc = ∅. Therefore, our goal is to show that for any p > n,

{Yn ⩾ a} ∩ {Yp < a} is a zero-set.

By Exercise 1 and above observation that (min(Yn, a) = Yn ∧ a)n is a martingale,
we have

E[(Yp ∧ a)|n] = Yn ∧ a a.s. (5)

Here |n is a short version for |Z1, . . . , Zn. Furthermore,

a · 1{Yn⩾a} = (Yn ∧ a)1{Yn⩾a} = E[(Yp ∧ a)|n]1{Yn⩾a} = E[(Yp ∧ a)1{Yn⩾a}|n]
= aE[1{Yn⩾a,Yp⩾a}|n] + E[Yp1{Yn⩾a>Yp}|n] a.s..

By taking expectation on both sides we get that

aP[Yn ⩾ a > Yp] = aP[Yn ⩾ a]− aP[Yn ⩾ a, Yp ⩾ a] = E[Yp1{Yn⩾a>Yp}],

which implies that P[Yn ⩾ a > Yp] = 0. Otherwise the above is equivalent to

a = E[Yp|Yn ⩾ a > Yp] < a,

which leads to a contradiction.

In fact, this implies that Yp ⩾ Yn almost surely. This is due to the fact that

P[Yn > Yp] = P[∃a ∈ Q : Yn ⩾ a > Yp] ⩽
∑
a∈Q

P[Yn ⩾ a > Yp] = 0.

By applying the argument to (−Yn)n, which is again an equidistributed martingale,
we analogously obtain that −Yp ⩾ −Yn almost surely. Combined together, P[Yn =
Yp] = 1 for all n < p ∈ N. Since a countable union of zero sets is again a zero set
we can conclude that

P[Yn = Y1 ∀n ∈ N] = 1.
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